

Manufacturing with Nanoparticles

Dr. M.C. Roco

Chair, Subcommittee on Nanoscale Science, Engineering and Technology, U.S. National Science and Technology Council Senior Advisor, NSF, www.nano.gov and www.nsf.gov/nano

- Functional nanoparticles and devices
- Four generations of nanomanufacturing
- The National Nanotechnology Initiative
- International perspective

Manufacturing at the Nanoscale

Transforming raw materials into products with desired properties and performance – generally in large quantities

Available atoms → structures "by design" → functional devices ~ 5,000, 10 –20 nm alternating layers of Ni - Al Al₂Cu Component A Solder or REACTIVE Activate Component B FOIL Mr Fe Co Ni Cu Zn Ga <mark>Ge As Se</mark> B BaHg₁₁ Reactive Nanotechnologies NbMdTcRuRhPdAgCd In SnSbTe MoPt₂ Ce|Pr|Nd|Pm|Sm|Eu|Gd|Tb|Dy|Ho|Er|Tm|Yb (NRL Center for Fe₃W₃C Computational Highly localized, low-energy, Materials Science) high-T, heat source

Atoms, molecules → 'nanoparticles' → materials/devices/systems

Utilization of Nanoparticles

- Introduction -

Nanoparticles (NP) may play two roles

- precursors for functional structures, devices and systems
- agents of change (enhancing or changing) of physical phenomena, chemical and biological processes

NP take advantage of

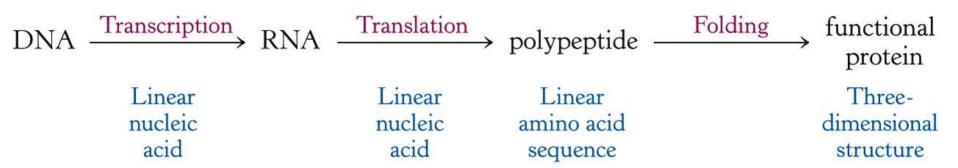
- new physical/chemical/biological properties because of the size/shape
- new molecular structures and architectures by nanofabrication, chemistry and biotechnology routes
- Few NP synthesis processes were developed decades ago. Currently, NP are commercially available (particle polymerization started during the second WW; self-assembly of micelles; synthesis of colorants), and one-dimensional nanostructures are used for GMR, supperlatices, coatings as optical and thermal barriers, hard coatings
- Present challenge: control, use various materials, processing, 3D structures, bottom-up methods, scale-up

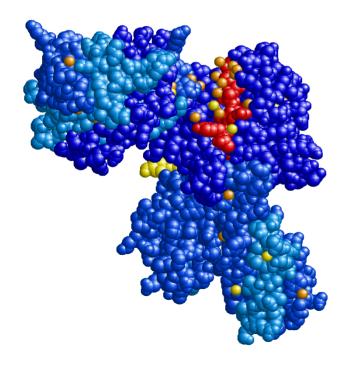
Manufacturing at Nanoscale

- challenges -

- Create tailored structures in the 0.1-100 nm range
- Combine top-down and bottom-up approaches
- Integration along scales with larger systems
- Large scale production and economical scale up: different concepts and principles?
- Interaction non-living and living structures
- Replication (ex: lithography)
 Self-replication (ex: bio, DNA-based)
- Revolutionary processes envisioned
 Extend existing manufacturing capabilities if possible

Manufacturing at Nanoscale

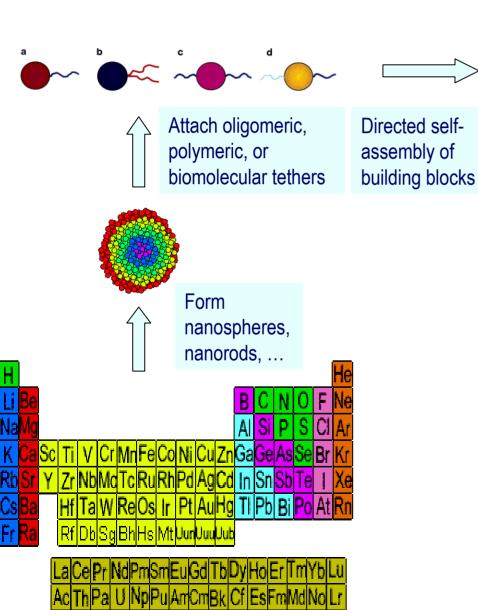

- typical bottom-up processes -

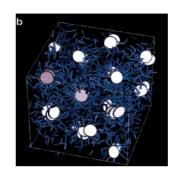

- Nucleation and growth
 - Aerosol and colloidal dispersions; deposition on surfaces
- Selfassembling
 - Natural process in living systems and biomimetics
 - Chemistry/chemical manufacturing
 - Guided by electric, magnetic, optical fields
 - DNA controlled
- Templating
 - Al and carbon nanotubes; Substrate patterning
- Engineered molecules and molecular assemblies
 - (a) Designed molecules as devices
 - (b) Wires, switches, logic components;
 - (b) New molecular architectures by design
- Bio methods: (a) Selectivity; (b) Assembling

Manufacturing at Nanoscale - other typical processes -

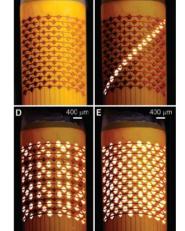
- Lithography:
 - Optical, ultraviolet, electron-beam (1-10 nm)
 - Scanning probe microscope based (1-10 nm)
- Nano-machining
- Nano-manipulation
 - Atoms and molecules (IBM), nanoparticles (USC)
 - 1D, 2D and 3D structures; assembling of nanodevices
- Fragmentation: mechanical milling, spark erosion, etc.
- Sintering of nano precursors
- Thermal treatment of metals, ceramics, composites
- Mixing of nanocomposites and their processing

Selfassembling: The Model of Molecular Biology





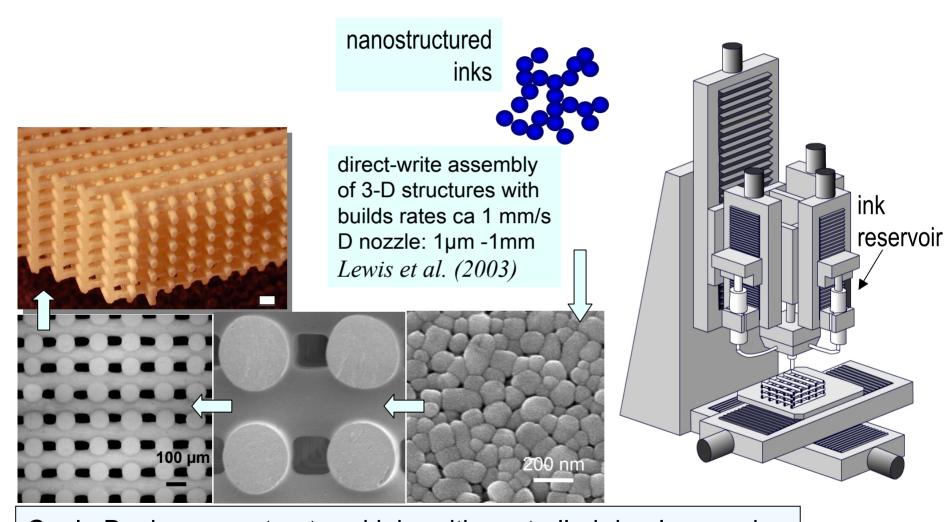
- •All information leading to final folded structure is contained with the gene sequence
- •Protein polymers spontaneously fold to final 3-D structure (U. Penn.)


Directed selfassembling

Ex: Approach based on surface recognition (Harvard U.)

H.O. Jacobs, A. R. Tao, A.Schwartz, D. H. Gracias, G. M. Whitesides

Increasing scale of selfassembly of building blocks directed by:


- Electric fields
- Structured light
- Patterned substrates
- Free-energy minimization

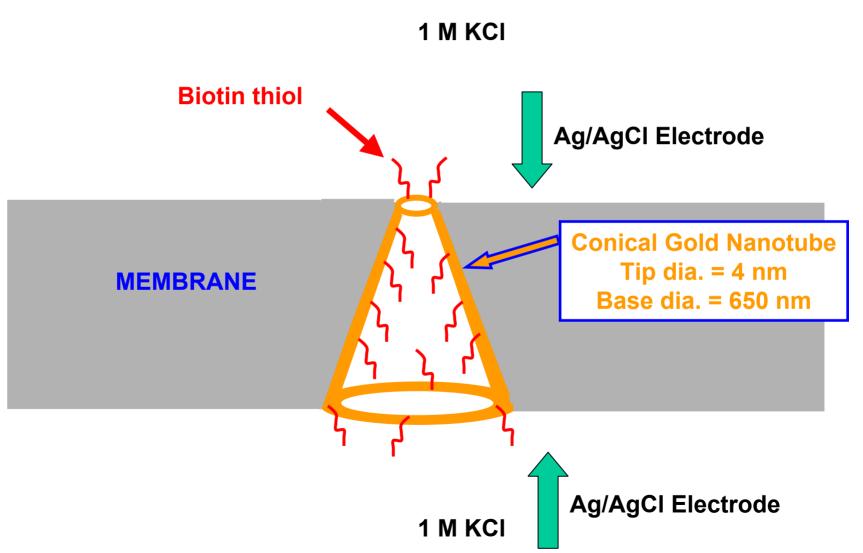
Goal: scaffolds, structures for

- Catalysis
- Hydrogen storage
- Fuel cells
- Tissue engineering
- Drug delivery
- Electronics

Directed selfassembling

Ex: Robotic deposition of nanoparticle/polymer gels

Goal: Design nanostructured inks with controlled rheology and create materials with 3-D features on multiple length scales (RPI)


Templating nanomaterials

Nearly any synthetic method used to prepare bulk materials can be adapted:

the template used as a mechano-chemical reactor

- Electrochemical metal deposition.
- Electroless metal deposition.
- Electrochemical polymerization.
- Chemical polymerization.
- Chemical vapor deposition.
- Sol-gel methods.
- Hydro-thermal methods

Ex: A gold nanotube with a small tip d = 4 nm for a streptavidin sensor (Martin et al., U. Florida)

Timeline for beginning of industrial prototyping and commercialization

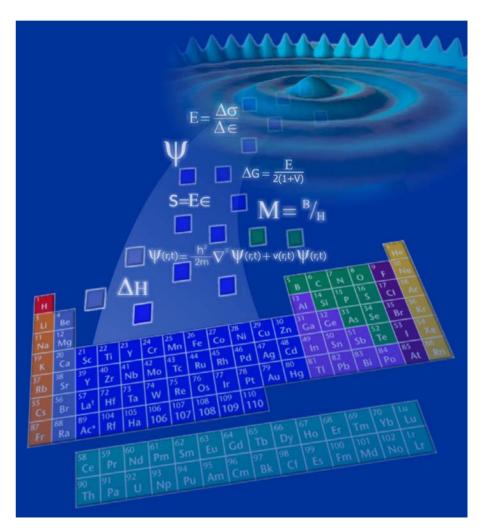
Accidental nanotechnology: since 1000s yr (carbon black)

Isolated applications (catalysts, composites, others) since 1990

Four generations of nanomanufacturing:

- □ First Generation: <u>passive nanostructures</u> in coatings, nanoparticles, bulk materials (nanostructured metals, polymers, ceramics): ~ 2001 −
- □ Second Generation: <u>active nanostructures</u> such as transistors, amplifiers, targeted drugs and chemicals, actuators, adaptive structures: ~ 2005 −
- □ Third Generation: <u>3D nanosystems</u> with heterogeneous nanocomponents; complex networking and new architectures ~ 2010 −
- □ Fourth Generation: molecular nanosystems with heterogeneous molecules, based on biomimetics and new designs ~ 2020 (?) -

First generation of products: <u>passive nanostructures (</u>~ 2001 –) - IN PRODUCTION -


- Goal: Reaching systematic control in passive nanoscale domains, typically for tailoring macroscale properties and functions
- Ex. applications: coatings, nanoparticles, dispersions, nanolayers, sintering, filters, surface nanopatterning, bulk materials nanostructured metals, polymers, ceramics. Areas of relevance are:
 - Materials
 - Chemicals, including catalysts
 - Pharmaceuticals
 - Electronics
- R&D focus: on nanostructured materials and tools Ex.: grain boundary simulation, nanomechanics

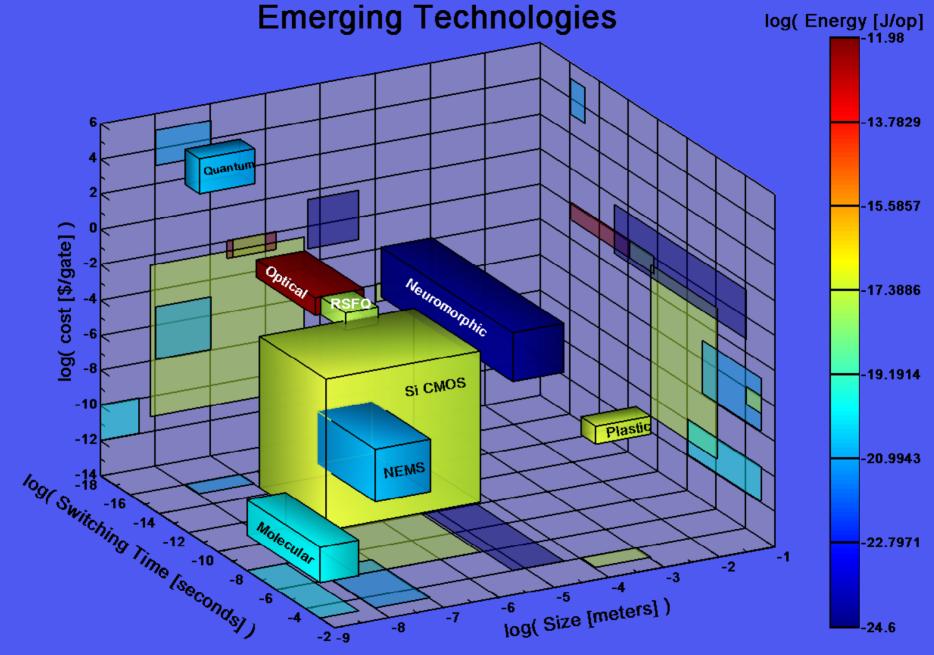
Nanomaterials By Design

www.ChemicalVision2020.org and NNI

The ability to employ scientific principles in deliberately creating structures with nano-scale features (e.g., size, architecture) that deliver unique functionality and utility for target applications

Nanomaterial Development: Future

Application-based Problem Solving


Start with existing needs, problems, or challenges in end-uses

Design, produce, and scale up nano-based materials with the exact properties needed* Large numbers of diverse products based on nanomaterials
"By Design" rapidly enter and succeed in multiple markets

* Based on established understanding and methods

Second generation of products: <u>active nanostructures</u> (~ 2005 –) - IN DESIGN -

- > Goal: active nanostructures for mechanical, electronic, magnetic, photonic, biological and other effects, typically for microscale devices and systems
- **Ex. applications:** Targeted drugs, actuators, transistors, sensors, molecular machines, light-driven molecular motors, plasmonics, nanoscale fluidics, various devices. Emmerging areas are:
 - Nanomedicine
 - Energy conversion and storage
 - Agriculture and food systems
 - Realistic multiphenomena/multiscale simulations
 - Environmental applications
- > <u>R&D focus</u>: novel devices and device system architectures

Motivation for hybridizing other devices with CMOS

Third generation of products: <u>3D nanosystems</u> (~ 2010 –)

- IN RESEARCH -

- Goal: engineer and manufacture three-dimensional heterogeneous nanosystems, typically for nanoscale components
- Ex. applications: multiscale selfassembling, networking of structures and devices at the nanoscale with new architectures, nanosystems with long scale order, biomedical. Emerging areas are:
 - > Nanosystem biology for medicine
 - > Nanosystem architectures
 - > Realistic multiphenomena/multiscale simulations
 - > Environmental bio implications
 - > Converging new technologies from the nanoscale
- R&D focus: Design and interaction of supramolecular systems and heterogeneous nanostructures

Fourth generation of products: <u>molecular nanosystems</u> (~2020?) - IN RESEARCH -

- Goal: heterogeneous molecular nanosystems, typically for nanoscale systems and hybrid bioassemblies
- Ex. applications: molecules as devices, monitor and condition cells as nanobiosystems, multiscale selfassembled systems, high added value 'smart' or/and adaptive components in larger systems
- R&D focus: atomic/molecular design, collective behavior and chemical-mechanical interaction of molecules, nano-bio-info-cognitive convergence, neuromorphic enginering

Several key issues

- Specific nanotechnology processes and equipment; expand on existing infrastructure
- Need for instrumentation and metrology
- Integrating length scales in 3-D, time scales, materials, functionality (mechanical, electromagnetic, thermal, biological, chemical) of manufacturing processes from macro to micro to nano
- Scaling up / high rate production requirements
- EHS requirements and research needs

Several key issues a. Nanotechnology processes and equipment

1. Conventional micro and nano fabrication

Electron beam lithography Thin film etching and deposition

Photolithography Oxide and semiconductor thin film growth

Synthesis, nanostructured coatings, & molecular assembly

Nanotube and nanowire growth Porous materials

Self-assembly Nanocomposites Cell culture/biological coatings/templates Molecular synthesis

Nanoparticle synthesis and characterization Electrophoretic particle deposition

Novel patterning, structuring, manipulation & assembly

Imprint Lithography/microcontact printing **Nanopore formation**

Nanozerography

Interferometric lithography

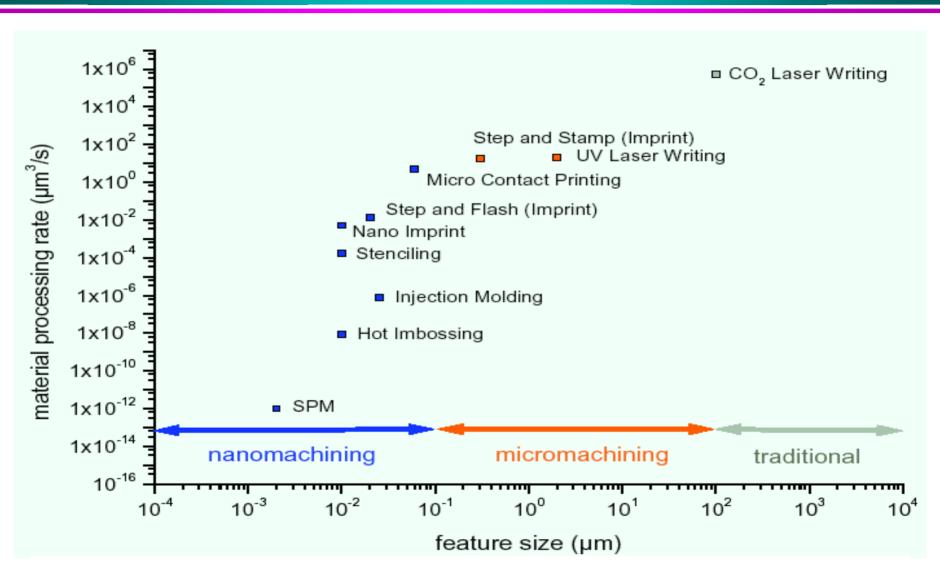
SPM lithography/direct manipulation/Dip pen

Quantum dot growth/patterning

Optical tweezers

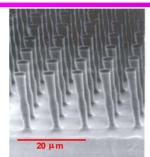
Chemically directed assembly of

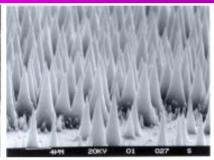
particles/devices


Inspection and characterization

- Scanned probe characterization
- Confocal microscopy
- Ultrahigh resolution electron microscopy
- Particle microscopies and spectroscopies

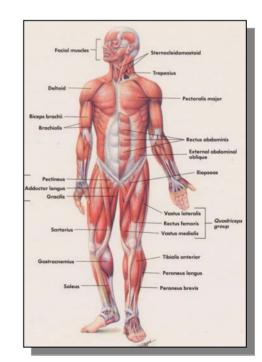
Simulation, modeling, & visualization

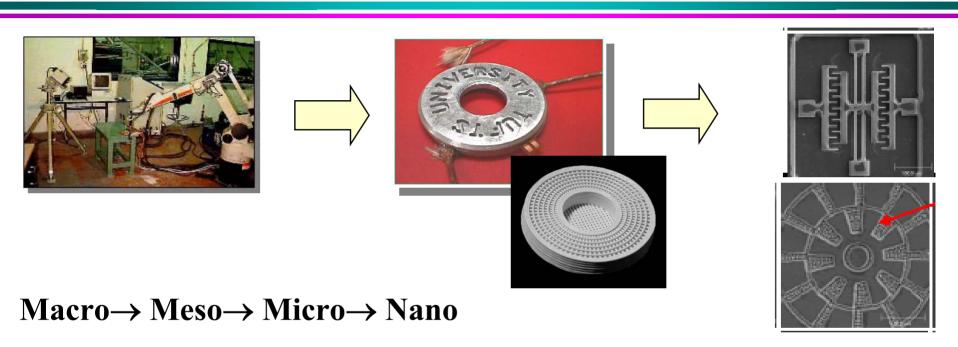

Scaling length and time scales of manufacturing processes from macro to micro to nano.

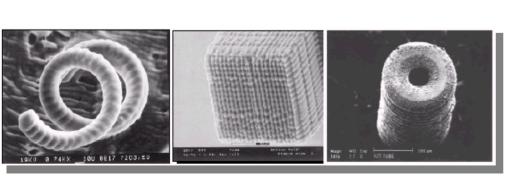

(Courtesy: A. Menon, Technical University of Denmark)

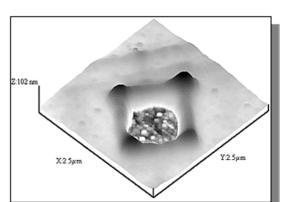
b. Nanomanufacturing: scaling up

• Focus on manufacturing **SCALE-UP** issues for industrial production: *producibility, predictability, productivity*




Micropost pattern


Nanopost pattern

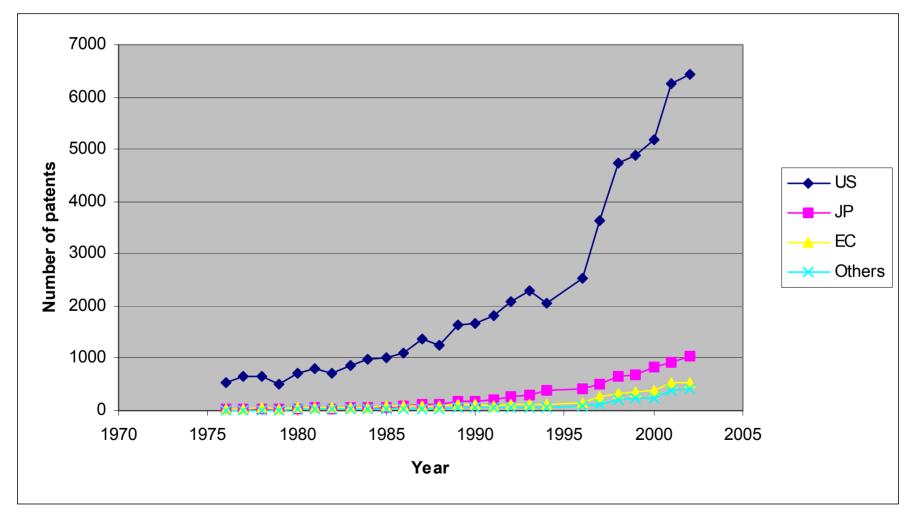

- Emphasis on 3-D systems **UP-SCALING**
 - integration across dimensional scales:
 nano-structures → functional devices →
 system architectures → products & services
 - > integration of materials, geometries
 - > integration of functionality (mechanical, electromagnetic, thermal, biological, chemical)



Manufacturing and Materials Processing and Integration Across Scales (UCLA)

C. Nanotech EHS Questions and R/D Needs

- Toxicology of new chemicals and materials considered for use in microelectronics and nanotechnology areas
- Interaction of nano-particles with biological systems
- Validation of the current standard methods for EHS assessment of materials
- Development of new methods for rapid and reliable assessment of the EHS impact of process chemicals and product materials.

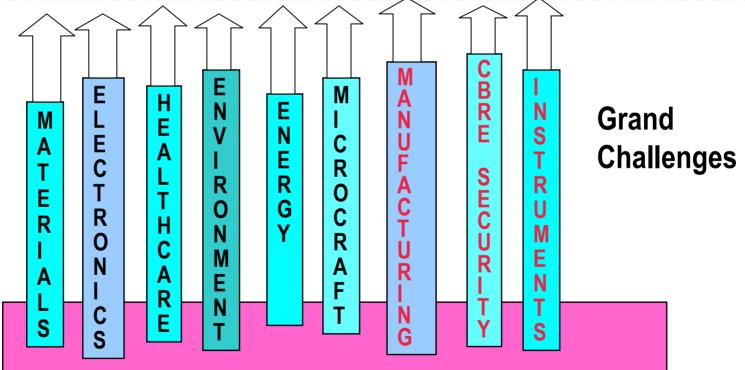

Nanotech EHS Evaluation

For: Raw materials/ Manufacturing & tools (metrology)/ New process byproducts / Product contents

For: Particles, surfaces

d. Nanotechnology patents per region (NSF, 2003)

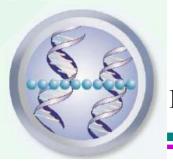
Searched by keywords at USPTO: nano*, atomic force microscop*, atomistic/molecular simulation, biomotor, molecular device, molecular electronics, molecular modeling, molecular motor, molecular sensor, quantum computing, quantum dot*, quantum effect*, scanning tunneling microscop*, selfassembl*



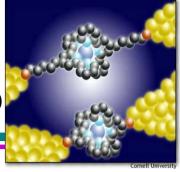
www.nsf.gov/nano (from J. of Nanoparticle Research, 2003)

National Nanotechnology Initiative (16 agencies, R&D \$1B/year)

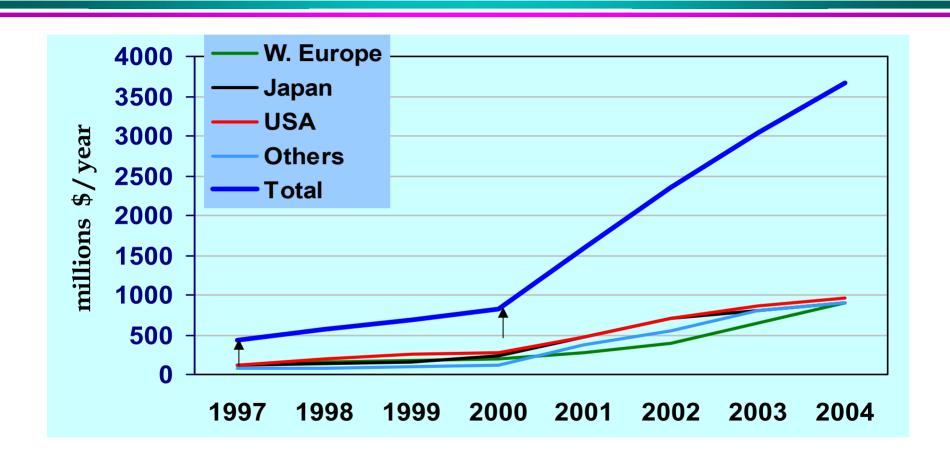
Interdisciplinary "horizontal" knowledge creation, versus "vertical" transition from basic concepts to Grand Challenges


Revolutionary Technologies and Products

Fundamental research at the nanoscale


Knowledge creation: same principles, phenomena, tools
Basic discoveries and new areas of relevance

MC. Roco, 9/17/03


NNI: Nanotechnology

Definition on www.nano.gov/omb_nifty50.htm (2000)

- Working at the atomic, molecular and supramolecular levels, in the length scale of approximately 1 – 100 nm range, in order to understand, create and use materials, devices and systems with fundamentally new properties and functions because of their small structure
- ► NNI definition encourages new contributions that were not possible before.
 - <u>novel phenomena, properties and functions at nanoscale,</u> which are nonscalable outside of the nm domain
 - the ability to measure / control / manipulate matter at the nanoscale in order to change those properties and functions
 - integration along length scales, and fields of application

Context – Nanotechnology in the World Government investments 1997-2004 (estimation NSF)

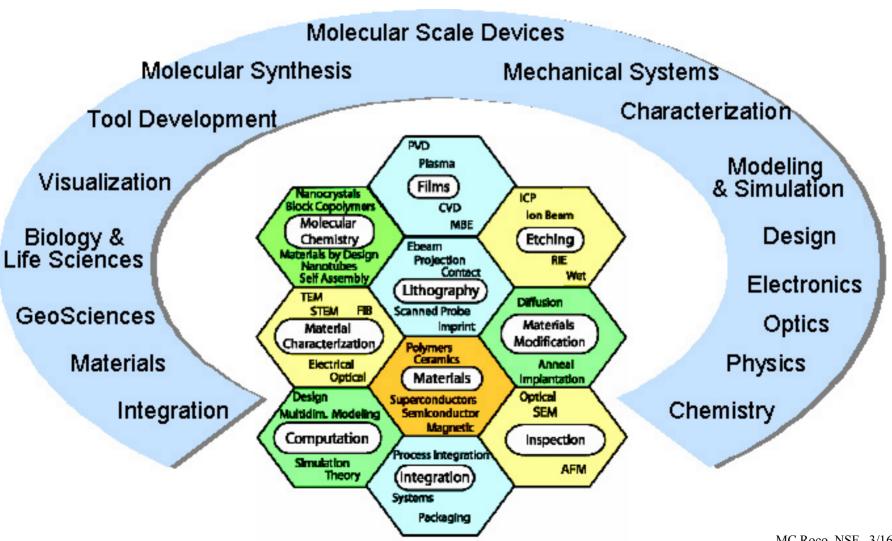
Note:

• U.S. begins FY in October, six months in advance of EU & Japan (in March/April)

"Nanoparticle Synthesis and Processing" program NSF, 1990 - (\$3 million)

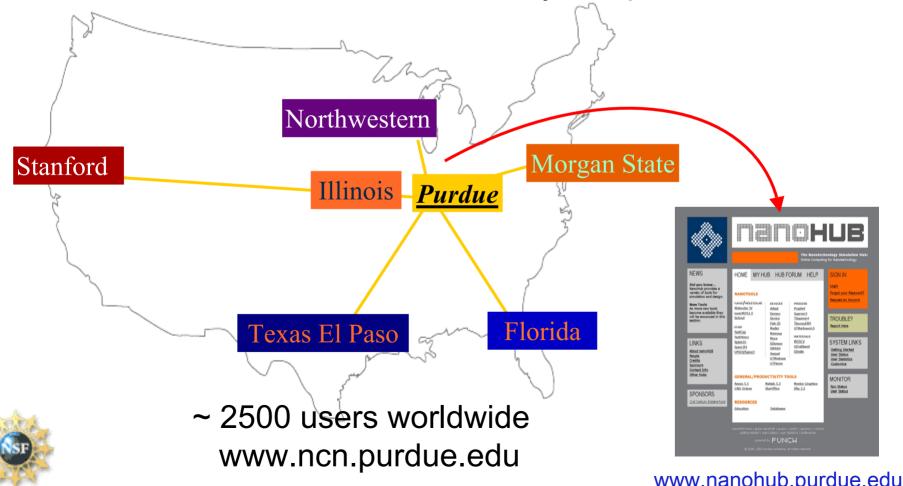
GOAL: SYNTHESIS & PROCESSING OF NANOPARTICLES
NICHE: PRODUCTION AT HIGH RATES; SPECIAL PROPERTIES

A PROJECT HAS CO-P.I. FROM DIFFERENT DISCIPLINES. Ex.:


- Nanoparticle Formation Using a Plasma Expansion Process, U. MN
- Nanocrystalline Materials Prepared by Spark Erosion, UCSB
- Controlled Production of Nanoparticles Using Microemulsions, MIT
- Combustion Process for Nanosized Reinforced Composites, U. WA-SL
- High Volume Production Using Laser Ablation of Microparticles, UT
- Particle-particle and Particle-substrate Interactions, Purdue U.
- Others: Submicron Aerosol Agglomeration, UCLA
- Nanophase Composite Materials for Magnetic Refrigeration, SUNY-B
- Effect of Electric Fields in Nanoparticle Flame Reactors, U. Cincinnati

NNI and nanomanufacturing 2000-

- Initial goal; a key reason for NNI
- A new Grand Challenge in 2002
- About 1/3 NNI budget has relevance to NM crossing other fields; to continue for all four generations of nanomanufacturing
- Evaluations: NRC (Academies), PCAST, OMB/OSTP

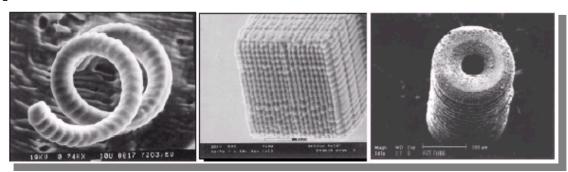


NSF National Nanotechnology Infrastructure Network (13 nodes)

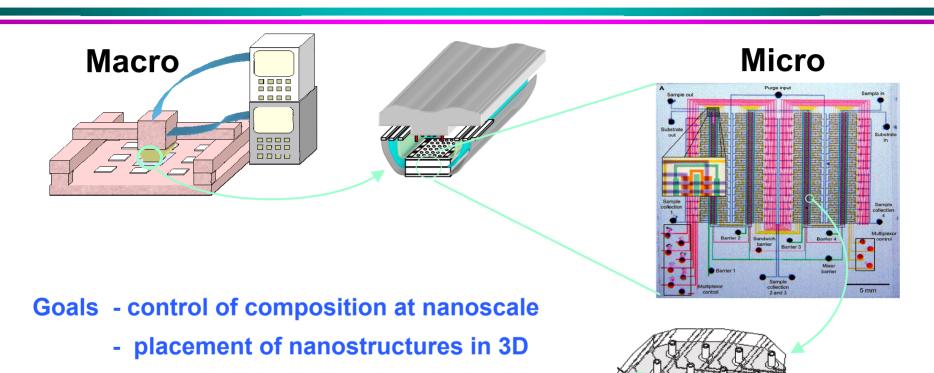
Network for Computational Nanotechnology (7 nodes)

Multi-scale, multi-disciplinary from "atoms to systems" research, education, user-facility components

Center of Scalable and Integrated Nanomanufacturing


UCLA, UC Berkeley, Stanford U., UCSD, UNCC, HP Labs

Goals **Research Thrusts** - 3D nano-manufacturing with 1-20 nm resolution (Plasmonic Imaging Lithography, Nano-Photonic Layer **Ultra Mold Imprinting)** Nano-Fluidic Layer **Massive and parallel** integration of heterogeneous **Sensor Layer** nano-LEGOs into devices - Electronic Layer **Nano-manufacturing** cluster tool 3D Terabit Ultra Compact light source Memory & integrated photonics **Ultra Sensitive** Nano Fluidic Circuits Bio-sensor


Center for Scalable and Integrated Nano-Manufacturing

UCLA, UC-Berkeley, Stanford, UC-San Diego, UNC-Charlotte (~\$18M, 5 years)

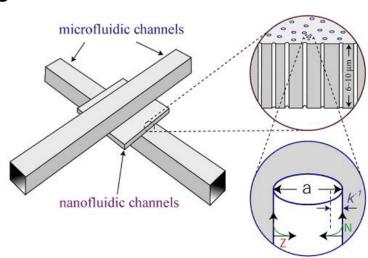
- plasmonic imaging lithography, nano-imprinting, ultramolding and imprinting lithography (sub-20nm 3D nanomanufacturing)
- field-assisted parallel nano-assembly (massively parallel integration)
- nano-scale precision engineering/tooling/metrology, nano-CAD platform, cluster tool
- nanoelectronics/nanophotonics/biosensor testbeds
- workforce development LA school district, CA science center

Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems, UIUC, NCSU, Caltech

Research Thrusts

Micro-Nano Fluidic Network Toolbit Process Sensing and Control Manufacturing Systems

knowledge of the state of matter at nano


Nano

reactant

Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems Center

U.Illinois (UIUC), North Carolina A&T, Caltech (~\$13M over 5 years)

- molecular gate array tool, electronically controlled nanopores
- efficient electrokinetic flows, micro- and nanofluidic networks
- nanoscale positioning and sensing
- nanoscale organic optoelectronic/combinatorial chemistry and biology array testbeds
- workforce development
 collaboratory,
 community colleges,...

DOE Nanoscale Science Research Centers

Spring '05

Summer '03

Center For Nanophase Materials Sciences at ORNL

Center For Functional Nanomaterials at BNL

Spring '04

Molecular Foundry at LBNL

Spring '04

Center for Nanoscale Materials at Argonne

Center for Integrated Nanotechnologies